Run cophescan on multiple traits at once
cophe.multitrait(
trait.dat,
querysnpid,
querytrait.names,
LDmat = NULL,
method = "single",
simplify = FALSE,
predict.hyp = TRUE,
Hn.cutoff = 0.2,
Hc.cutoff = 0.6,
est.fdr.based.cutoff = FALSE,
fdr = 0.05,
...
)
Named(traits) list of coloc structured data for k traits (Total number of traits)
vector of query variant ids = length(trait.dat), if the same variant
vector of names for the query traits, if the names of the multi.dat list contain the trait names please pass querytrait.names=names(multi.dat)
LD matrix
either 'single' for cophe.single
or 'susie' for cophe.susie
if TRUE removes intermediate results from output using 'multitrait.simplify'
if TRUE predicts the hypothesis based on the provided thresholds for pp.Hc and pp.Hn (overrides simplify) using cophe.hyp.predict
threshold for PP.Hc above which the associations are called Hc
threshold for PP.Hc above which the associations are called Hn
if True calculates the Hc.cutoff using 1-mean(PP.Hc)|PP.Hc > cutoff
fdr threshold to estimate Hc.cutoff
additional arguments of priors for cophe.susie
or cophe.single
if simplify is False returns multi-trait list of lists, each with:
a summary data.frame of the cophescan results
priors used
querysnp
querytrait
if simplify is TRUE only returns dataframe with posterior probabilties of Hn, Hc and Ha with no intermediate results if predict.hyp is TRUE returns a dataframe with output of simplify and the predicted hypotheses for all associations