CoPheScan with fixed priors

per.snp.priors()

per.snp.priors

adjust_priors()

adjust_priors

hypothesis.priors()

hypothesis.priors

cophe.single()

Bayesian cophescan analysis using Approximate Bayes Factors

cophe.single.lbf()

cophe.single.lbf

cophe.susie()

run cophe.susie using susie to detect separate signals

cophe.susie.lbf()

cophe.susie.lbf

combine.bf()

combine.bf

cophe.multitrait()

Run cophescan on multiple traits at once

summary(<cophe>)

print the summary of results from cophescan single or susie

multitrait.simplify()

Simplifying the output obtained from cophe.multitrait, cophe.single or cophe.susie

logsum()

logsum

CoPheScan with hierarchical priors

run_metrop_priors()

Run the hierarchical Metropolis Hastings model to infer priors

average_piks()

Average of priors: pnk, pak and pck

average_piks_list()

Average of priors: pnk, pak and pck from list (memory intensive)

average_posterior_prob()

Average of posterior probabilities: Hn, Ha and Hc

average_posterior_prob_list()

Average of posterior probabilities: Hn, Ha and Hc from list (memory intensive)

get_posterior_prob()

Calculation of the posterior prob of Hn, Ha and Hc

get_beta()

Extract beta and p-values of queried variant

sample_alpha()

sample alpha

sample_beta()

sample beta

sample_gamma()

sample gamma

logd_alpha()

dnorm for alpha

logd_beta()

dgamma for beta

logd_gamma()

dgamma for gamma

loglik()

Log likelihood calculation

logpost()

Log posterior calculation

logsumexp()

Log sum

metrop_run()

Run the hierarchical mcmc model to infer priors

pars2pik()

Conversion of parameters alpha, beta and gamma to pnk, pak and pck

piks()

List of priors: pn, pa and pc over all iterations

posterior_prob()

List of posterior probabilities: Hn, Ha and Hc over all iterations

logpriors()

Calculate log priors

pars_init()

Initiate parameters alpha, beta and gamma

propose()

Proposal distribution

target()

Target distribution

Predict hypothesis

cophe.hyp.predict()

Predict cophescan hypothesis for tested associations

Hc.cutoff.fdr()

Estimate the Hc.cutoff for the required FDR

Visualization

plot_trait_manhat()

Plot region Manhattan for a trait highlighting the queried variant

cophe_plot()

cophe_plots showing the Ha and Hc of all traits and labelled above the specified threshold

cophe_heatmap()

Heatmap of multi-trait cophescan results

prepare_plot_data()

Prepare data for plotting

Test data

cophe_multi_trait_data

Simulated multi-trait data

Package

cophescan-package cophescan

The 'cophescan' package.